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Quasi-exactly-solvable models from finite-dimensional 
matrices 
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Department of Physics, Kharkov University, Kharkov, U b b e ,  310077 

Received 8 February 1993, in final form 5 August 1993 

Abshad. A new method of obtaining many-dimensional quasi-exactly-solvable models is 
suggested. It is based on wmtruCting the generating function with the help of weffiaents 
which obey a finite difference equation. The stricture of this equation is selected to obtain 
the closed second-order differential equation for the gaeratiog hmction. Under some 
conditions this equation can be thought of as the Schrsnger equation in curved space. 
For the two-dimensional case the many-parametric class of solution is found explicitly. 
The spberidy-symmetrical case is investigated in detail. It is shown that this case 
contains spaces of a wnstant Riemann curvature of both sips. 

1. Introduction 

In recent years a new type of quantum-mechanical system has been discovered- 
quasi-exactly-solvable models (QESM). They possess the following characteristic 
property. In an infinitedimensional space of states there exists a subspace for which 
eigenvalues and eigenfunctions can be found algebraically. General features of such 
models, methods of study and history of discovery are described in detail, from 
different viewpoints, in the reviews Shifman (1989), Ushveridze (1989), Ulyanov and 
Zaslavskii (1992). (The last review contains also a number of physical applications.) 

Generally, the results obtained are related to the one-dimensional Schrddinger 
equation. As regards many-dimensional QESM, explicit results are obtained for the 
two-dimensional equation for some particular cases. In the paper by Schihan and 
Turbiner (1989) the Hamiltonian was taken as a quadratic-linear combination of 
generators of groups SU(2) X SU(2), S0(3), SU(3). In so doing, the representation of 
generators in terms of linear differential operators was used. The eigenvalue equation 
for such a Hamiltonian resulted in a differential second-order equation, which only 
under some conditions could be reduced to Schrodinger-like form, the corresponding 
space being, in general, curved. 

The conditions for bringing the equation into this form represent a set of algebraic 
equations for coefficients of the above-mentioned combination of generators. It 
proves to be so cumbersome that, in the general case, it is difficult even to write down 
this set. To obtain quasi-exact solutions explicitly, an appropriate combination of 
generators should be selected. Since for different groups, generators have different 
structures, one should repeat the procedure. 
In the present paper we develop another, more systematic, approach which 

generalizes the method of a previous paper for the one-dimensional case (Zaslavskii 

0305-4470/93/226563 + 12 $07.50 0 1993 IOP Publishing Ltd 6563 



6564 0 B Zaslauskii 

1990). It is based on using, from the very beginning, the finite difference equation for 
two-index quantities (if it is a question of obtaining a two-dkensional Schrodinger 
equation). We construct the generating function which obeys the differential second- 
order equation as a consequence of the finite difference equation. In so doing, we lose 
information about the hidden dynamic algebra describing the model. However, if one 
is interested in the possibility of finding a new QESM in an explicit form, it is more 
likely to be an advantage than a disadvantage: this method enables one to achieve the 
purpose in the shortest way omitting all intermediate information. In addition, the 
method under consideration enables one to find not only particular solutions but 
many-parametric classes of them simultaneously. This method also admits direct 
generalization to many-dimensional cases when it is difticult to carry out group- 
theoretical analysis. 

The paper is organized as follows. In section 2 we demonstrate the essence of the 
method using the simplest case of the one-dimensional Schr8dinger equation, and 
derive the general equation for the generating function describing QESM. In section 3 
we generalize this approach to the two-dimensional case. We study the general 
equation obtained for the particular class of metria. The conditions for reducing the 
equation to the Schrodinger form are written down explicitly. We find the general 
structure of the potential and curvature. In section 4 spherically-symmetrical metrics 
are discussed. In section 5 we derive (without further discussion) the equation for the 
generating function in the n-dimensional case. In section 6 we sum up and formulate 
some problems which remain beyond the scope of the present paper. 

2. The method of finite-dimensional matrices for the one-dimensional case 

Let us consider the finite didlerence equation 

Arum = 0 (1) 
where n,  m are integers. 

For reasons which become clear below, we will restrict ourselves to-the case when 
& represents a five-diagonal matrix, e.g. only A:*', A:*', A: can be non-zero. 
Therefore, the equation takes the form 

~a~+A~+'a ,+l+A~- 'a ._ ,+A~' ,+2a,+2+ A:-2a,-2=0. (2) 
We mean that (1) and (2) are eigenvalue equations but for convenience we include 

the eigenvalue in the matriv element 4. In the general case a solution of (2) 
represents an infinite sequence {a"}. However, we are interested only in such solutions 
which are cut off, at some finite n, from above and below. Put the minimum value 
n ~ , ,  = 0. Then 

a,=O V n > N + l  f l < O .  (3) 
Thus, we will consider (2) for O S n G N .  In so doing, 'superfluous' equations 

corresponding to n = N + l ,  N + 2  and n=-1, -2 must be turned into identities. 
Substituting these values of n into (2) and taking into account (3) we have 

Ag+'aN= 0 
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These relations are valid for arbitrary a, if and only if 

(5) A$+z=A$+I=AN+l- N - I - A O  - 2  = ~ 0  -1- - ~ l  -1- -0 . 

For matrix elements Am we will use second-order polynomials. This ensures that the 
generating function 

M 

"=a 

obeys the second-order differential equation (each degree of I I  acts similarly to 
x(aiax)) .  

With the boundary conditions (5) taken into account, one can write down 

A: = + Eln + c2n2 

A:+'= (n + l ) [ ~  + a,(n + l)] 
A~-'=(11-N-l)[j3~+j3~(n+l)] 

(7) 

A:" = y(n + l)& + 2) A;-'=6(n - N -  l)(n - N -  2). 

Thus, boundary conditions do not impose any restrictions on 4; they single out 
the general factor for Ai*' and determine A:'2up to the constant. It is clear now why 
it would serve no purpose to consider equations with a more complicated structure 
than (2). For instance, had we taken into consideration seven-diagonal matrices, the 
condition of cutting off the series generalizing (5) would have led to the equality 
A;+'=O at three different points n= -1, -2, -3. For a non-zero polynomial of the 
second power this is impossible. On the other hand, polynomials of the third power 
would have given rise to a third-order differential equation for q5. 

Now multiply (2) with coefficients (7) by x n  and carry out summation with respect 
to n. Then it turns out that the structure (7) of coefficients A: enables us to obtain the 
closed differential equation for @. For example, the term with an+l gives us 

N N 

In the lirst equation of this chain we took into account the fact that the term with 
n = -1 equals zero identically, just due to the factor (n + 1) which guarantees one of 
the conditions (5) is satisfied. In the second equality we made use of the fact that 
a,+,=O. 
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After simple calculations along similar lines we come to the differential equation 

d2@ - (y + a1x+~$ +Bln3 + 6 x 9  
d x 2  

d@ +z {ao+ al+ (c1+ ~ z ) x + x ~ ~ , , + ~ ~ ( 1 -  N)] + h36( l  - N)} 

+@[E~-/%&~+GN(N- I)x’]=O (9) 

(all coefficients are supposed to be real). 
The equation (9) is similar to equation (11) of Turbmer (1988). For comparison 

oneshouldmakesomere-definitions(6=~++,j3~=~+~, ~ = ~ ~ + u + ~ , ~ ~ = b ~ j + & j ~ ,  
etc.). One can eliminate the first derivative in the standard manner. Then (9) takes the 
Schrodinger form with a potential which is expressed in the general case in terms of 
elliptic functions (Turbmer 1988, Zaslavskii 1990, Ulyanov and Zaslavski 1992). 

As follows from the procedure described, each eigenvalue of the matrix equations 
(2) represents also an eigenvalue of the Schrodinger equation. In general, the reverse 
is not true: the Schrodinger equation has an infinite set of eigenvalues which cannot be 
obtained in the way indicated above. This i s  just the reason why (9) indeed describes 

Thus, in the considered approach such models are constructed starting from the 
finite diference equation, whose structure is particularly adapted to this purpose. The 
procedure is based on the following points: (i) the corresponding matrix is of three- or 
five-diagonal type; (i) coefficients of the matrix are polynomials of the second degree 
in n; ( i )  the conditions of cutting off the sequences {U,,) are satisfied. 

Equation (9) is the most general one which can be obtained by this approach. It 
can be generalized to the many-dimensional case in a direct way. In the next section 
we will consider the two-dimensional case. 

QESM. 

3. Two-dimensional QESM: the general form of the Sehr6dinger equation 

Consider the equation 

&$“Unrm,= 0. 

We wish to guarantee the existence of solutions which are cut off at n =0, Nand 
m=O, M 

um=o VnZ=N+l mZ=M+l 

n<O m<O. 

The matrix elements in (IO) are polynomials in n and m of the total second power. 
The matrix A;? must remove indices n, m at no more than rt2. Taking into account 
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(11) and repeating the reasoning of the previous section step by step, we have 
4 ; = c , + c , n + c z n z + d l m + ~ m 2 + 2 b n m  
4+’;-‘=2f(n+ l ) (m-M-  1) 
A;-1 ;+’ = 2g(n - N -  l)(m + 1) 
A;+’;+’=2e(n+l)(m+l) 
A;-’ ;-‘=2h(n - N -  l ) (m - M -  1) 
A;+’ E= (n + l )[k+ I(n + 1)  + b m ]  
A:-’ ;= (n - N -  l)[a(n - 1)  + V m  + y]  

A;:+’= [r+2m+p(m + l)](m+ 1) 
4 ;-’= [2dn + m(m - 1) + ~ ] ( m  - M -  1) 
A:+’;=A(n + l ) (n  + 2) 

& ;-’= D(m - M -  2)(m - M - 1) 

A%” = C(m + l ) (m + 2) 
An-2 m- m - B(n - N-2)(n -N-  1) 

(the rest of matrix elements are identically zero). 
The generating function reads 

0GmG.U 

Multiply (10) by x”y” and carry out summation with respect to n and m. Then we 
obtain the closed equation for +: 

Here 

-g”=A + lx+ cg2+ a s 3  + Bx4 

-gW = e + sy + tx +gxz+fyz+ bxy +j3yx2+ dxy2 + hxS2 
Tx= k+ I +  (c1 + q ) x  - 2Mfy - 2SMxy +xz[a(l -N) + y] 

V =  Co+2hMNxy -7N.x- EMY + BN(N- l)xz+ DM(M - l)y2 

-gW=C+py + 4 y 2 +  my3 + Dy4 

(154 

(15b) 

- 2hMyx2+ 2B(1 -N)X3 
(W Ty =P + r + (di + dz)Y - Zh’gX - 2gryjcY + y ’[a( 1 - M) + E ] 

- 2hiVxyz+ 2D(1- M)y3 .  
The equation (14) can be rewritten in terms of covariant derivatives with respect to 

the metric g””: 
-g”’@, -Ap)(Vv-Av)@ + U+ =O. (16) 

Meanwhile, the Schrodinger equation in Riemannian space must take the form 
-AY + U,tY=O 
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Here AY is a two-dimensional Laplacian, g is the determinant, g,, is the metric 
inverse with respect to g””. Reduction of (16) to (17) cannot be carried out in the 
general case. However, it becomes possible if A” is. a pure gradient: 

A,=e ,p .  

y = 

Then for the function 

we indeed obtain (17) by direct substitution. In so doing, comparison of coefficients at 
Y and aYl8Xp with the corresponding ones in (17) gives us 

For the condition (18) to be satisfied it is necessary that 

-Ay,,= 0. (22) 
One should calculate A” according t0~(20), find the matrix elements g,, inverse to 

(15b), compute A,, and substitute into (22). As a result of such a substitution we obtain 
a fraction whose numerator represents a polynomial in x and y. Equating its 
coefficients to zero, we obtain a set of algebraic equations for quantities entering (15). 
In the general case the corresponding system appears to be so complicated and 
contains so large a number of equations that it is difficult to write them down 
explicitly, or indeed to investigate them. This is the reason why only some separate 
examples of QESM were found by means of constructing special combinations of group 
generators with specially selected coefficients (Shifman and Turbiner, 1989). 

We choose another approach. Its key idea consists in restriction to a class of 
metria which enables one to find and describe a whole class of QESM explicitly. The 
simplest choice of a diagonal (in coordinatesx, y) metric leads to a trivial system since 
according to (15) with go = 0 variables in (14) and (17) are separated. However, the 
system becomes non-trivial for the metric which in our coordinate system is off- 
diagonal: 

where a = go. 
Unfortunately, this metric has the signature (1, -1) (note that it also takes place 

for models (25) and (e) ‘in Chapter (E) of Shifman and Turbiner 1989). Inasmuch as 
the case in point is the Schradmger equation such models do not have clear physical 
meaning. To avoid this drawback, one can make the coordinate transformation 

x=u+iu y=u-iu (24) 
whence the metric (23) takes the form 

where c = a12. 
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In general, the system remains too complicated. Therefore, we will restrict 
ourselves to the case when the matrix governing (10) is symmetrical in the sense that 

(26) &'Z' =A;,;'. 

Then it immediately follows from (12) that 
M = N  c1 = dl f = g  k=r 
s=t  &=y p=s .  (27) 

Note also that (26) and (27) guarantee that (14) and (17) are real in variables U, U. 
Direct calculation shows that the condition (22) entails the following set of 

equations: 
@cl - yb + 2(&- hk+jN@- hSN) = 0 

2f~1- YS -@k+2N(fa -@S) =O 
sc, +2N(fs - e@) - kb +2(fk  - ey) =O. 

(28a) 
(286) 
( 2 W  

Thus, we have three equations for eight quantities. 
Now the coefficient c in (25) is given by 

c=ef2Fu+4fr2+rZ(b-2f) +2j3r%+hr4 rZ=u2+v2 (29) 
while coefficients Tp entering (14) are given by 

T" = k+ ( ~ 1 -  2Nf)u+ ~ ' ( y -  2N@) - v'(y+ 2N@) -2Nhur' 
T' = v(c, +2Nf + 2yu - 2hNr'). 

(-4 A + U., - CO)'? =O 

U*,= (2c)-'(pO + 2p1u +p2r2+ 4 ~ u ~ + ~ ~ r ~ u  +pg4)  

(30) 

(31) 

(32) 

The Schr6dinger equation takes the form 

with the potential 

where coefficients are 
&,=k2--2kS+2eC1 

p1 =2N(fs - e@+ey-fk) + 2(ey-fk) + kcl +cls - kb 
p2=4N(N+2)(f-  eh) + 4N(@s +fcl - bf -bk) + c:+2(sy-/3k-ky) 
K =  2N(bf -@. + y~ - f ~ 1 )  + YS + yk -@k 
pj =4N(2N+3)(fb -hs) + 4(N+ l)(fr- hk) +2(2N+ l)(by -c$)  + 2c1y 
p4=4N(N+ 1)( @'- bh) +2(2N+ 1)( by-hc1) + y z .  

The curvature is 
4 

R= -- (wo+ wlu+ w2r2+ ui2u2+ w,r2u+ my4)  

mo = s2 - be, 

'm2= 2( @s- b f )  + 4 ( f -  he) 

C 

w1 = 4(fs -@e) 

&= 4(bf -Ps) 
~ j = 4 (  f @  - hs)  w4=B2-hb. 

(33) 

(34) 
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The Schrodinger equation (31) with the potential (32) whose coefficients (33) are 
expressed in terms of quantities obeying three relations (28) is the main result of our 
paper. It represents a new class of QESM in a Riemann space with the metric (25). 

The expressions obtained must be supplemented with the condition of normaliz- 
ability 

(Y, '4) = du d u G  G2 e-"< a. (35) I 
It is worth stressing that this condition in general is not satisfied automatically for 

solutions we deal with. One must check it every time for any model under consider- 
ation. In particular, it may tum out that it holds true only in some region of the 
parameters of the problem, while for other values the relationship between the 
spectrum of the finite-dimensional problems (10) and that of the Schrodinger equation 
is lost. 

4. Spherically-symmetrical melrics and separation of variables 

In this section we report the results of the analysis of general formulae of the previous 
section in particular cases. The simplest one of a flat space turns out to be of little 
interest: examination of (23) along with R=O according to (34) shows that the 
potential represents a two-dimensional harmonic oscillator or even reduces to a 
constant. This means that for non-trivial QESM to be obtained in our approach the 
metric (25) must describe a curved space. 

We will consider here the situation when the coefficient c in the two-dimensional 
metric depends on the radius only: 

dr2 + r2dqz 
u=rcosq D = rsin q. (36) &2= 

c(r) 
First, this may be of interest in physical applications and serve as a prototype for 

more realistic three-dimensional models. Second, since spherically symmetrical case 
admits separation of variables, it gives the possibility to elucidate the relation between 
two-dimensional and one-dimensional QESM. 

First note that the choice 

c= (1 - r2)2 (37) 
(which is consistent with (28)) gives us a space o,f constant curvature R = -8. That in a 
space with R =constant < 0 one can find QESM, was indicated by Shifman and Turbiner 
(1989). (Although the corresponding expression for the metric listed in equation (47) 
of their paper differs from (37) of ours, the two spaces of constant curvature are, in 
fact, isometric.) The model we found is more general than that of Shifman and 
Turbiner (1989) since their potential vanishes while ours does not. Moreover, in 
general in (32) f i l ,  fi3#0, so the potential, in contrast to the metric, is not spherically 
symmetrical. 

Also, in our approach, spaces with positive constant curvature can be obtained. It 
is easy to check that the metric 

c= (1 + r2)2 
corresponds to R =8. 
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The manifold described by (37) is non-compact whereas the metric c(r )  from (38) 

Let now both the metric and potential be functions of r only ( $l =p3 = 0). Then the 
corresponds to a compact manifold. 

two-dimensional Schrodinger equation (31) admits separation of variables: 

YI =x(r )eq  m is integer. (39) 
By further transformation of variables the radial part of the Schrodmger equation 

can be reduced to the one-dimensional Schrodinger equation. However, in general it 
needs very cumbersome (although direct) calculations. Therefore, we restrict our- 
selves to consideration of several examples of physical interest. 

First, consider the case of spaces with a constant curvature. If the metric takes the 
form (33, substitution of 

r=tanhx 

x=$ sinncosx 

leads to the Schrodinger equation 

with the potential 

~=El~h4x-EI[E1-4(N+1)J coshzx+ (mz-:) (sinh-2x-cosh-zx)+ U. 

El= q-2N Oo= 4N+ 1 - 2E1(2N+ 1). (42) 

This is'nothing but generalization of the potential of the type VI11 from the table in 
Turbiner (1988), due to the additional third term in (42). (For comparison one needs 
to put in the formulae of Turbmer a=-I, a=2N+1) .  

The case (38) can be considered in a similar way. Now the change of variables 
reads 

r=tanx 
x= $ sinh x cosh x. (43) 

The potential in (41) proves to be 

U= -Et ws4x + coszx El[El + 4(N+ I)] + ( d - 4 )  (sin-'x + cos-'x) + U. 
El = c1 + 2N 

Note that potentials (42) and (44) arise in a natural way in physical applications 
describing spin-phonon and spin-spin interactions (see section 3.5 of the review by 
Ulyanov and Zaslavskii 1992). Thus, the approach developed in the present paper 
turns out to cover a range of physically relevant examples. 

In a similar way one can show that (28) admits the metric with the coeffjcient 

Uo= -2E1(1+ 2N) - 4N- 1. (44) 

~ ~ c =  1 - rz .  (45) 
The potential is 
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The manifold is non-compact, the curvature R = 4/(1- r2) tends to infinity when 

In a similar way for 
r+ 1. 

c = l + r 2  (47) 
we obtain (41) with the potential 

(c! - kl +$) (m2-+) 
cosh'x S l n h  x 

- + T + m z +  c:, r=sinhx $=~(tanhn)". (48) 

Thus, in both these last cases, separation of variables leads to well known exactly 
solvable models with P6schl-Teller potentials. 

Note also that potentials (m'-$) (sinh-2x-cosh-2x) and (,'-a) 
(sin-2x+cos-2x) arises for the metrim (37) and (38) if we put in (42) and (44) E,=O. 
This follows from direct substitution of (28), taking into account that the two- 
dimensional potential U, (32) in this case reduces to a constant (U, should not be 
confused with 0). In other words, QESM in spaces of constant curvature with 
u,,=constant (Shifman and Turbmer 1989) are, in fact, exactly solvable, being 
described by P6schl-Teller potentials. 

We now discuss the issue of normalizability. First consider the most interesting 
case (37). The factor e-8 entering the expression for the wavefunction (19) can be 
computed directly with the help of (18)-(20) and (30): 

( rTl )  v = N - - -  c1 
e-@=(1-r2)+exp 2 Y c o S 9 .  (49) 

As far as 4 is concerned, this quantity represents a polynomial in rand therefore, 
convergency of (v,Y) (35) is determined by behaviour of the exponent at r+ 1 (i.e. 
the sign of v). If N- (c1/2)>y, '4' is normalizable in the region r=Zl (in the opposite 
case it is normalizable in the region r a l ) .  If IN-(cl/2)1sy the quantity (Y,Y) 
diverges. 

For the metric (38) the wavefunction describing QESM appears to be normalizable 
independently of the values of the parameters of the problem. 

For metncs (45) and (47) with a spherically-symmetrical potential, the condition of 
normaliability reduces simply to that for bound states of the onedimensional 
Schr6dinger equation (41): 

' 

5. A general n-dimensional case 

One of the main advantages of the suggested approach is that it enables us to find the 
general structure of the equation which the generating function obeys. This is 
achieved by direct generalization of the method discussed in sections 2 and 3 for one- 
and two-dimensional cases. Therefore, we list the corresponding formulae without 
detailed discussion. 

Now the matrix equation contains discrete variables nl, nz, . . . n,. It includes 
terms in which indices are removed no more than at k 2  for no more than two 
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variables simultaneously. The conditions of cutting off the finite difference equation at 
n,= N, for each i= 1 , 2 ,  . . . , S dictates the structure of such an equation: 

a. ,... nr (CO+ wj+ d,pfli) + 21$@~+ Wi- 4- Oa.. . n , + ~ .  . .r-l.. . 

+e&+ W i +  Oa.. .4+~ ._ .n i+~,  . . 
+h,(ni- N - Wi- Nj- O a . .  . n j - ~ .  . .",-I,. , (51) 
+(K+2K'jn)(ni+l)a .__"  j + l . . , + ( ~ i + ~ i i n i ) ( n ' - ~ ~ -  l ) a . . . ~ , - l , . ,  

+ A h  + l ) ( n j +  2)a. .  , n i + Z . .  . + B h -  N - 2 ) ( n j - N i -  1)a.. .4-2.. , =O. 
Here summation is taken with respect to repeating indices 

e..=e.. h..=h.. f..= I e..=h..= U U 0. 
'I I' 'I I' 

Multiply (51) by xY1, . . . , x? and sum over all values of nl , . . . , n,. Then for the 
generating function 

#= aq...nsx:l. ..e 
",,..as 

one can obtain the closed differential second-order equation 

where the coefficients are given by (there is no summation over i and j here) 

-gv=Azd,+eq+KJxi+ .Exj+ djixixj+fi,.x;+fiixf (544 

Ti= Id'+ (ci+ dj)xj-  2, 2 fhNe- 2x& hi+, 
E e 

+r!(ei+ 2 2 )  -2; NpxPIp'+2Bj~~. ( l -  Nj) (54b) 
P 

V =  c,, + 2 hmNmN,xmx. - "(1" + 21"'"'~~) + BmNm(Nm - 1 ) ~ : .  ( 5 4 4  
men m m 

The Schrbdinger equation can be obtained by means of substitution (19) but only if 
the conditions of integrability which generalize (22) are satisfied. We wil l  not study 
here the properties of (53) and (54) since it is a theme for a separate investigation. It is 
only worth noting that (54) gives us, in OUT framework, the most general structure of 
the equation for # describing QESM in the class of polynomials in xi .  Note that QESM 
which can be obtained from the known ones in a flat space by means of Darboux, 
Gelfand-Levitan or other transformations (Ushveridze 1991) are unrelated to the 
subject of our paper. 

6. Summary and outlook 

We have suggested a simple and effective method which enables us to formulate the 
equation for the generating function of quasi-exact solutions. In so doing, we need not 
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either derive expressions for group generators as h e a r  differential operators (see 
appendix A of the review by Shifman 1989) or select special combinations of them, as 
were made by Shifman and Turbiner (1989). Instead, we deal with finite-dimensional 
matrices. It is of interest to compare the two approaches directly and elucidate 
whether they are equivalent. In addition, the following question arises: can a quasi- 
exactly-solvable system with a given finite matrix be described in terms of more than 
one dynamic algebra? 

Since there is no oscillation theorem for many-dimensional Schrodinger equation 
one cannot state that solutions obtained belong certainly to the low-lying part of the 
spectrum, as is the case for one-dimensional systems (Ulyanov and Zaslavskii 1992). It 
is of interest to elaborate classification of energy levels corresponding to quasi-exact 
solutions. 

With the help of the method suggested we have managed to find the many- 
parametric class of two-dimensional models. It is especially interesting that this class 
contains spaces with a constant curvature. Generalization of this result to the three- 
dimensional w e  could be of interest for relativistic cosmology. 

Additionally, it is worth investigating two-dimensional models with a metric more 
general than that considered in the present paper. 

Finally, it is interesting to elucidate whether it is possible to obtain QESM with a 
magnetic field. 
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